Time-frequency transforms of white noises and Gaussian analytic functions

نویسندگان

چکیده

A family of Gaussian analytic functions (GAFs) has recently been linked to the Gabor transform white noises [4]. This answered pioneering work by Flandrin [10], who observed that zeros noise had a regular distribution and proposed filtering algorithms based on spectrogram. In this paper, we study in systematic way link between GAFs class time-frequency transforms noises. Our main observation is correspondence pairs (transform, GAF) generating for classical orthogonal polynomials. covers some transforms, such as Daubechies-Paul wavelet transform. It also unveils new windowed discrete Fourier which map fundamental GAFs. Moreover, discuss subtleties defining its infinite dimensional Hilbert spaces finite approximations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalizing time-frequency importance functions across noises, talkers, and phonemes

Listeners can reliably identify speech in noisy conditions, although it is generally not known what specific features of speech are used to do this. We utilize a recently introduced data-driven framework to identify these features. By analyzing listening-test results involving the same speech utterance mixed with many different noise instances, the framework is able to compute the importance of...

متن کامل

Quantum Time-Frequency Transforms

Time-frequency transforms represent a signal as a mixture of its time domain representation and its frequency domain representation. We present efficient algorithms for the quantum Zak transform and quantum Weyl-Heisenberg transform.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 2021

ISSN: ['1096-603X', '1063-5203']

DOI: https://doi.org/10.1016/j.acha.2019.07.003